James Gusella, PhD, Jong-Min Lee, PhD, Vanessa Wheeler, PhD, Ricardo Mouro Pinto, PhD, Marcy E. MacDonald, PhD
Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

Cell. 2015 Jul 30;162(3):516-26. doi: 10.1016/j.cell.2015.07.003.

As a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.

 Identification-of-Genetic-Factors-that-Modify-Clinical-Onset-of-Huntington’s-Disease-.pdf
Christopher Newton-Cheh, MD, MPH, Mark Daly, PhD
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization

Nat Genet. 2014 Aug;46(8):826-36. doi: 10.1038/ng.3014. Epub 2014 Jun 22.

The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ~8–10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval–associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

 Genetic-association-study-of-QT-interval-Newton-Cheh.pdf
Jordan W. Smoller, MD, ScD, Benjamin Neale, PhD, Alysa Doyle, PhD, Aarno Palotie, MD, PhD
Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis

Lancet. 2013 Apr 20;381(9875):1371-9. doi: 10.1016/S0140-6736(12)62129-1.

Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. SNPs at four loci surpassed the cutoff for genome-wide significance (p<5x~10-8) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signaling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers.

 Identification-of-risk-loci-with-shared-effects.pdf